Add to Book Shelf
Flag as Inappropriate
Email this Book

Multiscaling of Porous Soils as Heterogeneous Complex Networks : Volume 15, Issue 6 (26/11/2008)

By Santiago, A.

Click here to view

Book Id: WPLBN0003988200
Format Type: PDF Article :
File Size: Pages 10
Reproduction Date: 2015

Title: Multiscaling of Porous Soils as Heterogeneous Complex Networks : Volume 15, Issue 6 (26/11/2008)  
Author: Santiago, A.
Volume: Vol. 15, Issue 6
Language: English
Subject: Science, Nonlinear, Processes
Collections: Periodicals: Journal and Magazine Collection, Copernicus GmbH
Historic
Publication Date:
2008
Publisher: Copernicus Gmbh, Göttingen, Germany
Member Page: Copernicus Publications

Citation

APA MLA Chicago

Benito, R. M., Losada, J. C., Cárdenas, J. P., Borondo, F., Santiago, A., & Tarquis, A. M. (2008). Multiscaling of Porous Soils as Heterogeneous Complex Networks : Volume 15, Issue 6 (26/11/2008). Retrieved from http://gutenberg.cc/


Description
Description: Grupo de Sistemas Complejos, Departamento de Física, E.T.S.I. Agrónomos, Universidad Politécnica de Madrid, 28040 Madrid, Spain. In this paper we present a complex network model based on a heterogeneous preferential attachment scheme to quantify the structure of porous soils. Under this perspective pores are represented by nodes and the space for the flow of fluids between them is represented by links. Pore properties such as position and size are described by fixed states in a metric space, while an affinity function is introduced to bias the attachment probabilities of links according to these properties. We perform an analytical study of the degree distributions in the soil model and show that under reasonable conditions all the model variants yield a multiscaling behavior in the connectivity degrees, leaving a empirically testable signature of heterogeneity in the topology of pore networks. We also show that the power-law scaling in the degree distribution is a robust trait of the soil model and analyze the influence of the parameters on the scaling exponents. We perform a numerical analysis of the soil model for a combination of parameters corresponding to empirical samples with different properties, and show that the simulation results exhibit a good agreement with the analytical predictions.

Summary
Multiscaling of porous soils as heterogeneous complex networks

Excerpt
Albert, R. and Barabási, A.-L.: Statistical mechanics of complex networks, Rev. Mod. Phys., 74(1), 47–97, 2002.; Bak, P., Tang, C., and Wiesenfeld, K.: Self-organized criticality: an explanation of 1/f noise, Phys. Rev. Lett., 59, 381-384, 1987.; Barabási, A.-L. and Albert, R.: Emergence of scaling in random networks, Science 286, 509–512, 1999.; Barabási, A.-L., Albert, R., and Jeong, H.: Mean-field theory for scale-free random networks, Phys. A., 272, 173–197, 1999.; Bird, N., Cruz D\'iaz, M., Saab, A., and Tarquis, A. M.: Fractal and multifractal analysis of pore-scale images of soil, J. Hydrol., 322, 211-219, 2006.; Blair, J. M., Falconer, R. E., Milne, A. C., Young, I. M., and Crawford, J. C.: Modeling three-dimensional microstructure in heterogenous media, Soil. Sci. Soc. Am. J., 71, 1807–1812, 2007.; Cislerova, N.: Characterization of pore geometry, in: Proceedings of the International Workshop on modeling of transport processes in soils at various scales in time and space, Leuven, Belgium, 24–26~November~1999, 103–117, 1999.; Dorogovtsev, S. N. and Mendes, J. F. F.: Evolution of networks, Adv. Phys., 51, 1079–1187, 2002.; Dorogovtsev, S. N., Mendes, J. F. F., and Samukhin, A. N.: Structure of growing networks with preferential linking, Phys. Rev. Lett., 85, 4633–4636, 2000.; Elliot, T.R. and Heck, R. J.: A comparison of 2-D and 3-D thresholding of CT imagery, Can. J. Soil Sci., 87(4), 405–412, 2007.; EMBRAPA SOLOS: Sistema de Clasificacao de Solos, 2 Edicao, Empresa Brasileira de Pesquisa Agropecuaria. Solos, Rio de Janeiro, 2006.; Erdös, P. and Rényi, A.: On random graphs, Publ. Math. Debrecen, 6, 290–297, 1959.; GE Healthcare: MicroView 2.1.2 – MicroCT Visualization and Analysis, London, Canada, 2006.; Horgan, G. W. and Ball, B. C.: Simulating diffusion in a Boolean model of soil pores, Eur. J. Soil Sci., 45, 483–491, 1994.; Krapivsky, P. L. and Redner, S.: Organization of growing random networks, Phys. Rev. E., 63, 066123, doi:10.1103/PhysRevE.63.066123, 2001.; Tsonis, A. A., Swanson, K. L., and Wang, G.: On the Role of Atmospheric Teleconnections in Climate, J. Climate, 21, 2990-3001, 2008.; Lin, H. S., McInnes, K. J., Wilding, L. P., and Hallmark, C. T.: Effects of soil morphology on hydraulic properties. I. Quantification of soil morphology, Soil Sci. Soc. Am. J., 63, 948–954, 1999.; Newman, M. E. J.: The structure and function of complex networks, SIAM Review, 45, 167–256, 2003.; Origin Lab Corporation: Origin Pro 7.5. Northampton, MA, 2006.; Price, D. J. S.: Networks of scientific papers, Science, 149, 510–515, 1965.; Price, D. J. S.: A general theory of bibliometric and other cumulative advantage processes, J. Amer. Soc. Inform. Sci., 27, 292–306, 1976.; Rasband, W.: ImageJ 1.36. National Institutes of Health, USA, 2006.; Santiago, A. and Benito, R. M.: Emergence of multiscaling in heterogeneous complex networks, Int. J. Mod. Phys. C., 18, 1–17, 2007a.; Santiago, A. and Benito, R. M.: Connectivity degrees in the threshold preferential attachment model, Phys. A. 387, 2365–2376, 2007b.; Santiago, A. and Benito, R. M.: An extended formalism for preferential attachment in heterogeneous complex networks, Europhys. Lett., 82, 58004, doi:10.1209/0295-5075-82-58004, 2008a.; Santiago, A. and Benito, R. M.: Improved clustering through heterogeneity in preferential attachment networks, Int. J. Bifurc. Chaos, accepted, 2008b.; Strogatz, S. H.: Exploring complex networks, Nature, 410, 268–276, 2001.; Tsonis, A. A., Swanson, K. L., and Roebber, P. J.: What do networks have to do with climate? Bull. Amer. Meteor. Soc., 87, 585-595, 2006.; Tsonis, A. A., Swanson, K. L., and Kravtsov, S.: A new dynamical mechanism for major climate shifts, Geophys. Res. Lett., 34, L13705, doi:10:1029/GL030288, 2007.; Tsonis, A. A., and Swanson, K. L.: Topology and Predictability of El Niño and La Niña Networks, Phys. Rev. Lett., 100, 228502, doi:10.1103/PhysRevLett.100.228502, 2008.; Valentini, L., Perugini, D., and Poli, G.: The small-world

 
 



Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.