Add to Book Shelf
Flag as Inappropriate
Email this Book

Synchronization of Coupled Stick-slip Oscillators : Volume 21, Issue 1 (24/02/2014)

By Sugiura, N.

Click here to view

Book Id: WPLBN0003991837
Format Type: PDF Article :
File Size: Pages 17
Reproduction Date: 2015

Title: Synchronization of Coupled Stick-slip Oscillators : Volume 21, Issue 1 (24/02/2014)  
Author: Sugiura, N.
Volume: Vol. 21, Issue 1
Language: English
Subject: Science, Nonlinear, Processes
Collections: Periodicals: Journal and Magazine Collection (Contemporary), Copernicus GmbH
Historic
Publication Date:
2014
Publisher: Copernicus Gmbh, Göttingen, Germany
Member Page: Copernicus Publications

Citation

APA MLA Chicago

Hori, T., Kawamura, Y., & Sugiura, N. (2014). Synchronization of Coupled Stick-slip Oscillators : Volume 21, Issue 1 (24/02/2014). Retrieved from http://gutenberg.cc/


Description
Description: Research Institute for Global Change, JAMSTEC, Yokosuka, Japan. A rationale is provided for the emergence of synchronization in a system of coupled oscillators in a stick-slip motion. The single oscillator has a limit cycle in a region of the state space for each parameter set beyond the supercritical Hopf bifurcation. The two-oscillator system that has similar weakly coupled oscillators exhibits synchronization in a parameter range. The synchronization has an anti-phase nature for an identical pair. However, it tends to be more in-phase for a non-identical pair with a rather weak coupling. A system of three identical oscillators (1, 2, and 3) coupled in a line (with two springs k12=k23) exhibits synchronization with two of them (1 and 2 or 2 and 3) being nearly in-phase. These collective behaviours are systematically estimated using the phase reduction method.

Summary
Synchronization of coupled stick-slip oscillators

Excerpt
Abe, Y. and Kato, N.: Complex earthquake cycle simulations using a two-degree-of-freedom spring-block model with a rate-and state-friction law, Pure Appl. Geophys., 170, 745–765, doi:10.1007/s00024-011-0450-8, 2013.; Aihara, I., Takeda, R., Mizumoto, T., Otsuka, T., Takahashi, T., Okuno, H. G., and Aihara, K.: Complex and transitive synchronization in a frustrated system of calling frogs, Phys. Rev. E, 83, 031913, doi:10.1103/PhysRevE.83.031913, 2011.; Arcuri, P. and Murray, J.: Pattern sensitivity to boundary and initial conditions in reaction-diffusion models, J. Math. Biol., 24, 141–165, 1986.; Burridge, R. and Knopoff, L.: Model and theoretical seismicity, B. Seismol. Soc. Am., 57, 341–371, 1967.; Cochard, A. and Madariaga, R.: Dynamic faulting under rate-dependent friction, Pure Appl. Geophys., 142, 419–445, 1994.; Chelidze, T., Matcharashvili, T., Gogiashvili, J., Lursmanashvili, O., and Devidze, M.: Phase synchronization of slip in laboratory slider system, Nonlin. Processes Geophys., 12, 163–170, doi:10.5194/npg-12-163-2005, 2005.; de Rubeis, V. D., Czechowski, Z., and Teisseyre, R. (Eds.): Synchronization and Triggering: from Fracture to Earthquake Processes, in: Geoplanet: Earth and Planetary Sciences, Springer Berlin Heidelberg, vol. 1, 2010.; Dieterich, J. H.: Modeling of rock friction 1. Experimental results and constitutive equations, J. Geophys. Res., 84, 2161–2168, 1979.; Dieterich, J. H. and Kilgore, B. D.: Direct observation of frictional contacts: New insights for state-dependent properties, Pure Appl. Geophys., 143, 283–302, 1994.; Ermentrout, B.: Type I membranes, phase resetting curves, and synchrony, Neural Comput., 8, 979–1001, 1996.; Ermentrout, G. B. and Terman, D. H.: Mathematical Foundations of Neuroscience, in: Interdisciplinary Applied Mathematics, Springer, Vol. 35, 2010.; Gu, J.-C., Rice, J. R., Ruina, A. L., and Tse, S. T.: Slip motion and stability of a single degree of freedom elastic system with rate and state dependent friction, J. Mech. Phys. Solids, 32, 167–196, 1984.; Helmstetter, A. and Shaw, B. E.: Afterslip and aftershocks in the rate-and-state friction law, J. Geophys. Res., 114, B01308, doi:10.1029/2007JB005077, 2009.; Huang, J. and Turcotte, D.: Evidence for chaotic fault interactions in the seismicity of the San Andreas fault and Nankai trough, Nature, 348, 234–236, 1990.; Huang, J. and Turcotte, D.: Chaotic seismic faulting with a mass-spring model and velocity-weakening friction, Pure Appl. Geophys., 138, 569–589, 1992.; Ishibashi, K.: Status of historical seismology in Japan, Ann. Geophys., 47, 339–368, doi:10.4401/ag-3305, 2004a.; Ishibashi, K.: Seismotectonic modeling of the repeating M 7-class disastrous Odawara earthquake in the Izu collision zone, central Japan, Earth Planets Space, 56, 843–858, 2004b.; Kano, M., Miyazaki, S., Ito, K., and Hirahara, K.: Estimation of Frictional Parameters and Initial Values of Simulation Variables Using an Adjoint Data Assimilation Method with Synthetic Afterslip Data, Zishin, 2, 57–69, 2010 (in Japanese).; Kano, M., Miyazaki, S., Ito, K., and Hirahara, K.: An Adjoint Data Assimilation Method for Optimizing Frictional Parameters on the Afterslip Area, Earth Planets Space, 65, 1575–1580, 2013.; Kawamura, H., Hatano, T., Kato, N., Biswas, S., and Chakrabarti, B. K.: Statistical physics of fracture, friction, and earthquakes, Rev. Mod. Phys., 84, 839–884, doi:10.1103/RevModPhys.84.839, 2012.; Kuramoto, Y.: Chemical Oscillations, Waves, and Turbulence, Springer, New York, 1984.; Linker, M. F. and Dieterich, J. H.: Effects of variable normal stress on rock fr

 
 



Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.